
HYPERGRAPH-BASED UNSYMMETRIC NESTED DISSECTION
ORDERING FOR SPARSE LU FACTORIZATION

LAURA GRIGORI∗, ERIK G. BOMAN† , SIMPLICE DONFACK‡ , AND TIMOTHY

A. DAVIS§

Abstract. In this paper we present HUND, a hypergraph-based unsymmetric nested dissection
ordering algorithm for reducing the fill-in incurred during Gaussian elimination. HUND has several
important properties. It takes a global perspective of the entire matrix, as opposed to local heuristics.
It takes into account the assymetry of the input matrix by using a hypergraph to represent its
structure. It is suitable for performing Gaussian elimination in parallel, with partial pivoting. This
is possible because the row permutations performed due to partial pivoting do not destroy the column
separators identified by the nested dissection approach. The hypergraph nested dissection approach
is essentially equivalent to graph nested dissection on the matrix AT A, but we only need the original
matrix A and never form the usually denser matrix AT A. Our implementation also uses weighted
matching (MC64) and local reordering (CCOLAMD) to further improve the ordering. Experimental
results on 27 medium and large size highly unsymmetric matrices compare HUND to four other well-
known reordering algorithms. The results show that HUND provides a robust reordering algorithm,
in the sense that it is the best or close to the best (often within 10%) of all the other methods, in
particular on highly unsymmetric matrices.

Key words. sparse LU-factorization, reordering techniques, hypergraph partitioning, nested
dissection

AMS subject classifications. 65F50, 65F05, 68R10

1. Introduction. Solving a linear system of equations Ax = b is an operation
that lies at the heart of many scientific applications. We focus on sparse, general
systems in this paper. Gaussian elimination can be used to accurately solve these
systems, and consists in decomposing the matrix A into the product of L and U ,
where L is a lower triangular matrix and U is an upper triangular matrix. One of the
characteristics of Gaussian elimination is the notion of a fill element, which denotes
a zero element of the original matrix that becomes nonzero in the factors L and U
due to the operations associated with the Gaussian elimination. Hence one of the
important preprocessing steps preceding the numerical computation of the factors L
and U consists in reordering the equations and variables such that the number of fill
elements is reduced.

Although this problem is NP-complete [42], in practice there are several efficient
fill reducing heuristics. They can be grouped into two classes. The first class uses
local greedy heuristics to reduce the number of fill elements at each step of Gaussian
elimination. One of the representative heuristics is the minimum degree algorithm.
This algorithm uses the graph associated with a symmetric matrix, and chooses at each
step to eliminate the row corresponding to the vertex of minimum degree. Several

∗INRIA Saclay - Ile de France, Laboratoire de Recherche en Informatique Universite Paris-Sud
11, France (laura.grigori@inria.fr).
†Scalable Algorithms Dept., Sandia National Laboratories, NM 87185-1318, USA, Sandia is a

multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy’s National Nuclear Security Administration under Contract
DE-AC04-94AL85000. This work was supported by the US DOE Office of Science through the
CSCAPES SciDAC institute (egboman@sandia.gov).
‡INRIA Saclay - Ile de France, Laboratoire de Recherche en Informatique Universite Paris-Sud

11, France (sidonfack@gmail.com).
§CISE Dept., University of Florida, supported by the National Science Foundation (0620286)

(davis@cise.ufl.edu).

1



variants, such as multiple minimum degree [37] (Mmd) and approximate minimum
degree [1] (Amd), improve the minimum degree algorithm, in terms of time and/or
memory usage.

The second class is based on global heuristics and uses graph partitioning to
restrict the fill to only specific blocks of the permuted matrix. Nested dissection [20]
is the main technique used in the graph partitioning approach. This algorithm uses the
graph of a symmetric matrix and employs a top-down divide-and-conquer paradigm.
The graph partitioning approach has the advantage of reordering the matrix into a
form suitable for parallel execution. State-of-the-art nested dissection algorithms use
multilevel partitioning [28, 34]. A widely used routine is Metis NodeND from the
Metis [33] graph partitioning package.

It has been observed in practice that minimum degree is better at reducing the fill
for smaller problems, while nested dissection works better for larger problems. This
observation has lead to the development of hybrid heuristics that consist in applying
several steps of nested dissection, followed by the usage of a variant of the minimum
degree algorithm on local blocks [29].

For unsymmetric matrices, the above algorithms use the graph associated with the
symmetrized matrix A+AT or AT A. The approach of symmetrizing the input matrix
works sometimes well. However, computing the nonzero structure of AT A can be time
consuming in practice. There are few heuristics that compute an ordering for AT A
without explicitly forming the structure of AT A. The column approximate minimum
degree [14] (Colamd) is a local greedy heuristic that implements the approximate
minimum degree algorithm on AT A without computing the structure of AT A. The
approach of wide separators [22, 5] is a global approach that orders the graph of AT A
by widening separators obtained in the graph of AT + A.

There are few approaches in the literature that aim at developing fill-reducing
algorithms that use as input the structure of A alone. For local heuristics, this is due to
the fact that the techniques for improving the runtime of minimum degree are difficult
to extend to unsymmetric matrices. In fact the minimum degree algorithm is related to
the Markowitz algorithm [39], which was developed earlier for unsymmetric matrices.
The Markowitz algorithm defines the degree of a vertex (called the Markowitz count)
as the product of the number of nonzeros in the row and the number of nonzeros in the
column corresponding to this vertex. However, this algorithm is asymptotically slower
than the minimum degree algorithm. A recent local greedy heuristic for unsymmetric
matrices is presented in [2]. To obtain reasonable runtime, the authors use local
symmetrization techniques and the degree of a vertex is given by an approximate
Markowitz count. This work has been extended in [3] to better take into account
both the asymmetry and the numerical values of the input matrix.

In this paper we present one of the first fill-reducing ordering algorithms that fully
exploits the asymmetry of the matrix and that is also suitable for parallel execution.
It uses a variation of nested dissection, but it takes into account the asymmetry of the
input matrix by employing a hypergraph to represent its nonzero structure. Using
this hypergraph, the algorithm first computes a hyperedge separator of the entire
hypergraph that divides it into two disconnected parts. The matrix is reordered such
that the columns corresponding to the hyperedge separator are ordered after those
in the disconnected parts. The nested dissection is then recursively applied to the
hypergraph of the two disconnected parts, respectively. The recursion can be stopped
at any depth.

The usage of hypergraphs in our algorithm is fairly standard. However, there
2



are two main contributions in this paper. The algorithm uses as input the structure
of A alone, and does not need to compute the structure of AT A. We discuss later
in the paper the relations between using the hypergraph of A or the graph of AT A
to reorder A. In addition we show how the partitioning algorithm can be used in
combination with other important techniques in sparse Gaussian elimination. This
includes permuting large entries on the diagonal [17], a technique improving stability
in solvers implementing Gaussian elimination with static pivoting [35], as well as other
local orderings.

An important property of our approach is that the structure of the partitioned
matrix is insensitive to row permutations. In other words, the row permutations in-
duced by pivoting during Gaussian elimination do not destroy the column separators.
Hence the fill is reduced because it can occur only in the column separators and in the
disconnected parts of the matrix. But also this property is particularly important for
a parallel execution, since the communication pattern, which depends on the column
separators, can be computed prior to the numerical factorization. In addition, the
partitioning algorithm can be used in combination with other important techniques
in sparse Gaussian elimination.

We note that a partitioning algorithm that takes into account the asymmetry of
the input matrix was also considered by Duff and Scott in [18, 19]. There are several
important differences with our work. The authors focus on the parallel execution of
LU factorization, and their goal is to permute the matrix to a so called singly-bordered
block diagonal form. In this form the matrix has several diagonal blocks (which can
be rectangular), and the connections between the different blocks are assembled in
the columns ordered at the end of the matrix. The advantage of this form is that the
diagonal blocks can be factorized independently, though special care must be taken
since the blocks are often non-square. The authors rely on a different approach for
computing this form, and they do not analyze it for fill-reducing ordering.

The remainder of the paper is organized as follows. In Section 2 we give several
basic graph theory definitions and we describe in detail the nested dissection pro-
cess. In Section 3 we present our hypergraph based unsymmetric nested dissection
algorithm and its different steps. Section 4 discusses relations to graph models as
the graph of AT A or the bipartite graph of A. In Section 5 we present experimental
results that study the effectiveness of the new algorithm, in terms of fill, on a set of
highly unsymmetric matrices. We also compare the results with other fill-reducing
ordering algorithms. Finally, Section 6 concludes the paper.

2. Background: Nested Dissection and Hypergraphs.

2.1. Nested Dissection. Nested dissection [20, 36] is a fill-reducing ordering
method based on the divide-and-conquer principle. The standard method only applies
to symmetric matrices; here we show a nonsymmetric variation.

The sparsity structure of a structurally symmetric matrix is often represented as
an undirected graph. The nested dissection method is based on finding a small vertex
separator, S, that partitions the graph into two disconnected subgraphs. If we order
the rows and columns corresponding to the separator vertices S last, the permuted
matrix PAPT has the form A11 0 A13

0 A22 A23

AT
13 AT

23 A33

 ,

where the diagonal blocks are square and symmetric. Now the diagonal blocks A11 and
3



A22 can be factored independently and will not cause any fill in the zero blocks. We
propose a similar approach in the nonsymmetric case, based on a column separator.
Suppose we can permute A into the formA11 0 A13

0 A22 A23

0 0 A33

 ,

where none of the blocks are necessarily square. (This is known as singly bordered
block form.) Then we can perform Gaussian elimination and there will be no fill in
the zero blocks. Furthermore, this property holds even if we allow partial pivoting
and row interchanges. Note that if any of the diagonal blocks are square, then A is
reducible and the linear systems decouple.

The question is how to obtain singly-bordered block structure with a small column
separator. There are two common approaches: a direct approach [4, 31], and indirect
methods that first find doubly-bordered block diagonal form [19]. We choose the
direct method, and use hypergraph partitioning.

2.2. Hypergraph Partitioning and Ordering. In this paper we consider
the hypergraph model to represent the nonzero structure of an unsymmetric ma-
trix. Other graph models are briefly discussed in section 4. A hypergraph H(V,E)
contains a set of vertices V and a set of hyperedges E (also known as nets), where
each hyperedge is a subset of V . We will use the column-net hypergraph model of
a sparse matrix [6] where each row corresponds to a vertex and each column is a
hyperedge. Hyperedge ej contains the vertices given by the nonzero entries in column
j. An example of a matrix A is given in Equation 2.1 and its hypergraph is shown in
Figure 2.1.

A =

0BBBBBBBBBBBBBB@

0 1 2 3 4 5 6 7 8
0 x x
1 x x
2 x x x
3 x x x
4 x x x
5 x x
6 x x
7 x x
8 x x x

1CCCCCCCCCCCCCCA
(2.1)

Suppose we partition the vertices (rows) into two sets, R1 and R2. This induces a
partition of the hyperedges (columns) into three sets: C1, C2, and C3. Let C1 be the set
of hyperedges (columns) where all the vertices (rows) are in R1. Similarly, let C2 be the
set of hyperedges (columns) where all the vertices (rows) are in R2. Let C3 be the set of
hyperedges (columns) that are “cut”, that is, they have some vertices in R1 and some in R2.
Now let P be a row permutation such that all of R1 is ordered before R2, and let Q be a
column permutation such that all of C1 is ordered before C2, and all of C2 is ordered before
C3. Then

PAQ =

„
A11 0 A13

0 A22 A23

«
. (2.2)

It may happen that some rows in A11 or A22 are empty (all zero). In this case, permute
such rows to the bottom and we get

P̄AQ =

0@Ā11 0 Ā13

0 Ā22 Ā23

0 0 Ā33

1A . (2.3)

4



Figure 2.2 displays the result of the first step of unsymmetric nested dissection applied on
the hypergraph in Figure 2.1. The matrix obtained after permuting matrix A in Equation 2.1
is presented in Equation 2.4. Note that the separator in Figure 2.2 only contains hyperedges
and no vertices. Hence Equation 2.4 cannot be further reduced to the form presented in
Equation 2.3.

Fig. 2.1. Hypergraph of matrix A in Equation 2.1. The large circles are vertices, and the small
black dots represent hyperedges (nets).

Fig. 2.2. The result of the first step of unsymmetric nested dissection applied on the hypergraph
in Figure 2.1, the hyperedge separator is Es = {n0, n7}.

PAQ =

0BBBBBBBBBBBBBB@

1 8 4 5 2 6 3 0 7
0 x x
1 x x
5 x x
2 x x x
4 x x x
3 x x x
6 x x
7 x x
8 x x x

1CCCCCCCCCCCCCCA
(2.4)

Hypergraph partitioning has been well studied [6]. The objective is to partition the
vertices into two parts such that there are approximately equally many vertices in each part,
and the number of cut hyperedges is minimized. Although it is an NP-hard problem, fast

5



multilevel algorithms give good solutions in practice. Good software is readily available, like
PaToH [7], hMetis [32], and Zoltan [16]. The k-way partitioning problem (k > 2) is usually
solved by recursive bisection.

3. An Unsymmetric Nested Dissection Algorithm. We present an algorithm
with three stages. First, we apply hypergraph-based nested dissection to limit the fill. Sec-
ond, we perform row interchanges based on numerical values to reduce pivoting. Third, we
apply a local reordering on local blocks to again reduce fill.

3.1. Hypergraph Recursive Ordering. Recall our goal is to find permutations
P1 and Q1 such that (P1AQ1)(QT

1 x) = P1b is easier to solve than the original system Ax = b.
Our idea is to apply the block decomposition (2.2) recursively. This is quite different from
most recursive approaches for ordering linear systems, because our blocks are usually not
square.

Figure 3.1 (left) shows the sparsity structure of P1AQ1 after two levels of bisection. We
continue the recursive bisection until each block is smaller than a chosen threshold. As in
symmetric nested dissection, we expect it is beneficial to switch to a local ordering algorithm
on small blocks but in principle one could continue the recursion until each block has only one
row or column. We sketch the recursive ordering heuristic in Algorithm 1. In this variant,
the recursion stops at a constant block size, tmin.

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Fig. 3.1. The matrix after hypergraph ordering (left) and after row permutation from matching
(right).

3.2. Stabilization. The ordering procedure above only takes the structure into ac-
count, and not the numerical values. To stabilize the factorization and minimize pivoting,
we wish to permute large entries to the diagonal. A standard approach is to model this
as matching in the bipartite graph [17], and we can use the HSL [30] routine MC64. We
use the matching permutation to permute the rows as shown in Figure 3.1 (right). Observe
that after row permutation, the diagonal blocks are now square. The remaining rows in the
originally rectangular blocks have been “pushed down”. All the permutations applied on the
matrix after this step should be symmetric.

This permutation step for obtaining a strong diagonal is helpful for dynamic (partial)
pivoting methods, since the number of row swaps is significantly reduced, thereby speeding
up the factorization process [17]. It is essential for static pivoting methods [35], because it
decreases the probability of encountering small pivots during the factorization.

3.3. Local Reordering. The goal of the third preprocessing step is to use local
strategies to further decrease the fill in the blocks of the permuted matrix. Algorithms as
CAmd [10] (constrained Amd) or CColamd [10] (constrained Colamd) can be used for this
step. These algorithms are based on Colamd, respectively Amd, and have the property of
preserving the partitioning obtained by the unsymmetric nested dissection algorithm. This
is because in a constrained ordering method, each node belongs to one of up to n constraint

6



Algorithm 1 Hypergraph Unsymmetric Nested Dissection
1: Function [p, q] = Hund(A)
2: [m, n] = size(A)
3: if min(m, n) ≤ tmin then
4: p= 1:m
5: q= 1:n
6: else
7: Create column-net hypergraph H for A
8: Partition H into two parts using hypergraph partitioning
9: Let p and q be the row and column permutations, respectively, to permute A

into the block structure in Eq. 2.2
10: [m1, n1] = size(A11)
11: [p1, q1] = Hund (A11)
12: [p2, q2] = Hund (A22)
13: p = p(p1, p2 + m1)
14: q = q(q1, q2 + n1)
15: end if

sets. In our case, a constraint set corresponds to a separator or a partition. After the
ordering it is ensured that all the nodes in set zero are ordered first, followed by all the nodes
in set one, and so on.

A preprocessing step useful for the efficiency of direct methods consists of reordering the
matrix according to a postorder traversal of its elimination tree. This reordering tends to
group together columns with the same non zero structure, so they can be treated as a dense
matrix during the numeric factorization. This allows for the use of dense matrix kernels
during numerical factorization, improves the memory hierarchy usage, and hence leads to a
more efficient numeric factorization.

In order to preserve the structure obtained in the previous steps, we compute the elimi-
nation tree corresponding to the diagonal blocks of the input matrix. Note that in practice,
postordering a matrix preserves its structure but can change the fill in the factors L and U .
We remark that the local reordering should be applied symmetrically, so that the diagonal
is preserved.

3.4. Algorithm Summary. In summary, LU factorization with partial pivoting
based on unsymmetric nested dissection contains several distinct steps in the solution process:

1. Reorder the equations and variables by using the Hund heuristic that chooses per-
mutation matrices P1 and Q1 so that the number of fill-in elements in the factors
L and U of P1AQ1 is reduced.

2. Choose a permutation matrix P2 so that the matrix P2P1AQ1 has large entries on
the diagonal. The above permutation helps ensure the accuracy of the computed
solution. In our tests this is achieved using the HSL routine MC64 [17].

3. Find a permutation matrix P3 using a local heuristic and a postorder of the elimina-
tion tree associated with the diagonal blocks such that the fill-in is further reduced in
the matrix P3P2P1AQ1P

T
3 . In our tests this is achieved using constrained Colamd

and postordering based on the row merge tree [24] of the diagonal blocks.

4. Compute the numerical values of L and U .

The execution of the above algorithm on a real matrix (fd18) is displayed in Figure 3.2.
The structure of the original matrix is presented at top left. The structure obtained after
the unsymmetric nested dissection Hund is presented at top right. The structure obtained
after permuting to place large entries on the diagonal using MC64 is displayed at bottom
left. And finally the structure obtained after the local ordering is displayed at bottom right.

7



Fig. 3.2. Example of application of preprocessing steps on a real matrix fd18. Displayed are
(a) the structure of the original matrix fd18, (b) the structure obtained after Hund, (c) after
MC64, and (d) after CColamd

4. Relation to Graph Models. We have chosen to work with the hypergraph of
A (column-net model). Alternatively, we could have worked with a graph derived from A,
such as the graph of AT A or the bipartite graph of A.

The graph corresponding to the structure of B = AT A is known as the column intersec-
tion graph, since Bij 6= 0 iff columns i and j of A intersect. Catalyurek and Aykanat [8, 9]
showed that a hyperedge separator for A is a vertex separator in B, and proposed to use
hypergraph separators in A to obtain a fill-reducing ordering for B. Their main application
was linear systems from interior-point methods for linear programming. In addition we show
here that a vertex separator in B also gives a hyperedge separator in A; thus these problems
are essentially equivalent.

Theorem 4.1. A column (hyperedge) separator for A is a vertex separator for AT A,
and vice versa.

Proof. (⇒): Let IS be the index set of a column (hyperedge) separator in A, and let
I0, I1 be the index sets for the two remaining parts. Therefore, columns in Ii only intersect
columns in Ii and IS , for i = 0, 1. In the column intersection graph (AT A), let Vi correspond
to columns Ii and VS correspond to IS . It follows that there are no edges between V0 and
V1, therefore VS is a vertex separator. (⇐): Let V be the vertices in the graph of AT A,
let VS be a separator, and let Vi, i = 0, 1, be the remaining vertex sets. By construction,
there is no edge between V0 and V1. An edge in G(AT A) corresponds to a path of length
two in the bipartite graph or hypergraph of A. Thus the rows corresponding to V0 and V1

are only connected through the columns (hyperedges) corresponding to VS . When these are
removed, the rows corresponding to V0 and V1 are no longer connected, hence VS is a column
(hyperedge) separator in A.

Another approach consists in using the bipartite graph of A. The bipartite graph of the

8



n× n matrix A is equivalent to the graph of the 2n× 2n matrix

C =

„
0 A

AT 0

«
.

The separators obtained from bisection partitioning of the graph of C can be used to
permute the matrix A to a doubly bordered block diagonal form. This approach is used for
example in [18].

It is easy to see that a vertex separator in the graph of C might not be a column
separator in the hypergraph of A. Consider the simple matrix

A =

0@x
x

x x x

1A .

The graph of the augmented matrix C can be partitioned in two parts {1, 4} and {2, 5, 6},
and the vertex separator is formed by {3}. The vertex 3 corresponds to the third row, which
has nonzeros in all the columns of the matrix A. Hence it is not possible to partition the
column-net hypergraph of A in two disconnected parts as in Equation 2.2.

In other words, vertices in the separator of the graph of C which correspond to row
vertices of A might not belong to the column separator of the hypergraph of A. Note that
when the separator of the graph of C consists purely of column vertices, then these do in fact
form a column (hyperedge) separator in the hypergraph of A. Instead of using hypergraphs,
we could have used bipartite graphs, but the hypergraph model is more natural since we can
use hypergraph partitioning (not a constrained version of bipartite graph partitioning).

5. Experimental Results. In this section we present experimental results for Hund
algorithm applied to real world matrices. The tests are performed on a 2.4 GHz dual core
Intel, with 3.3 GBytes of memory. As stated in the introduction, our goal is to reorder
the matrix into a form that is suitable for parallel computation, while reducing or at least
maintaining comparable the number of fill-in elements in the factors L and U to other state-
of-art reordering algorithms. In the experiments, we compare the performance of the new
ordering algorithm with other widely used ordering algorithms as Amd, Colamd and Metis
(nested dissection), in terms of size of the factors. We study the execution time of Hund
compared to other reordering algorithms. We also discuss the quality of the partitioning, in
terms of size of the separators.

We use a set of highly unsymmetric matrices that represent a variety of application
domains. We present in Table 5.1 their characteristics which include the matrix order, the
number of nonzeros in the input matrix A, the nonzero pattern symmetry, the numerical
symmetry, and the application domain. The nonzero pattern symmetry represents the per-
centage of nonzeros for which both aij and aji are nonzeros. The numerical symmetry is
computed as the percentage of nonzeros for which aij = aji. The matrices are available from
University of Florida Sparse Matrix collection [11] and are listed according to their number of
nonzeros. Some of the matrices in our test set are highly reducible as lhr71c, mult dcop 03,
raefsky6. These matrices can benefit from a different preprocessing in which they are first
permuted to a block upper triangular form using the Dulmage Mendelsohn decomposition,
and then an ordering heuristic is applied on each diagonal block. However we keep these ma-
trices in our test set since several solvers as UMFPACK [12], SuperLU [15], SuperLU DIST
[35] do not apply the Dulmage Mendelsohn decomposition and can benefit from our approach.

We compare the ordering produced by Hund with four widely used fill-reducing ordering
algorithms, that is Amd, Colamd, and Metis nested dissection (applied on the structure
of A + AT or on the structure of AT A). The quality of each algorithm can be evaluated
using several criteria, as the number of nonzero entries (nnz) in the factors L and U , the
number of floating point operations performed during the numerical factorization, and the
factorization time. We restrict our attention to the first criterion, the number of nonzeros
in the factors L and U , since floating point operations are very fast on current computers

9



Str. Num.
# Matrix Order n nnz(A) Sym. Sym. Application Domain

1 swang1 3169 20841 100% 0% Semiconductor device sim

2 lns 3937 3937 25407 85% 0% Fluid dynamics

3 poli large 15575 33074 0% 0% Chemical process simulation

4 mark3jac020 9129 56175 7% 1% Economic model

5 fd18 16428 63406 0% 0% Crack problem

6 lhr04 4101 82682 2% 0% Light hydrocarbon recovery

7 raefsky6 3402 137845 0% 0% Incompressible flow

8 shermanACb 18510 145149 15% 3% Circuit simulation

9 bayer04 20545 159082 0% 0% Chemical process simulation

10 zhao2 33861 166453 92% 0% Electromagnetism

11 mult dcop 03 25187 193216 61% 1% Circuit simulation

12 jan99jac120sc 41374 260202 0% 0% Economic model

13 bayer01 57735 277774 0% 0% Chemical process simulation

14 sinc12 7500 294986 2% 0% Single material crack problem

15 onetone1 36057 341088 7% 4% Circuit simulation

16 mark3jac140sc 64089 399735 7% 1% Economic model

17 af23560 23560 484256 100% 0% Airfoil eigenvalue calculation

18 e40r0100 17281 553562 31% 0% Fluid dynamics

19 sinc15 11532 568526 1% 0% Single material crack problem

20 Zd Jac2 db 22835 676439 30% 0% Chemical process simulation

21 lhr34c 35152 764014 0% 0% Light hydrocarbon recovery

22 sinc18 16428 973826 1% 0% Single material crack problem

23 torso2 115967 1033473 99% 0% Bioengineering

24 twotone 120750 1224224 24% 11% Circuit simulation

25 lhr71c 70304 1528092 0% 0% Light hydrocarbon recovery

26 av41092 41092 1683902 0% 0% Unstructured finite element

27 bbmat 38744 1771722 53% 0% Computational fluid dynamics

Table 5.1
Benchmark matrices and their characteristics: the order, the number of nonzeros nnz(A), the

nonzero pattern symmetry (Str. Sym.), the numeric symmetry (Num. Sym.) and the application
domain.

while memory is often the bottleneck. (We also computed the number of operations and the
results were quite similar to the nonzero counts.)

The Hund reordering heuristic presented in Algorithm 1 starts with the hypergraph of
the input matrix and partitions it recursively into two parts. The recursion is stopped when
a predefined number of parts is reached. In our tests we use PaToH [7] (with a fixed seed
of 42 for the random number generator) to partition the hypergraph in a predefined number
of parts. PaToh uses recursive multilevel bisection, and hence it implements hypergraph
partitioning as described in Algorithm 1 and allows us to permute the matrix to the form
presented in Equation 2.3. We had initially implemented Hund calling PaToH for each
bisection step as in Algorithm 1, but this lead to slow execution times, due to excessive
copying of the submatrices. Here we only report on the version where we partition into a
predefined number of parts, and the recursive bisection is handled efficiently within PaToH.

To study the performance of Hund we vary the number of parts (denoted as k) in which
the matrix is partitioned as 16, 64, and 128. In adition we use two settings for PaToH, default
and quality. The latter is PaToH optimized for high quality partitions, at the expense of
slower execution.

10



5.1. Hund versus other Reordering Algorithms: Results with SuperLU.
In our first set of tests we use LU factorization with partial pivoting implemented in the Su-
perLU solver [15]. SuperLU uses threshold partial pivoting, with a preference for the diagonal
element. We report results for SuperLU with a threshold of 1, that implements LU with par-
tial pivoting in which at each step of factorization the element of maximum magnitude in
the current column of L is used as pivot. We have also performed experiments with different
values, as for example a threshold of 0.1, and a similar behavior of the algorithms has been
observed.

To evaluate Hund, the different preprocessing steps presented in section 3.4 are per-
formed before the LU factorization with partial pivoting. That is, first the matrix is re-
ordered using Hund heuristic. Second, the MC64 routine [17] is called to move large entries
onto the diagonal. Third, the matrix is reordered using constrained Colamd algorithm, as
presented in [10], and based on a postorder traversal of the row merge tree [24] of the diago-
nal blocks. After these three preprocessing steps, the LU factorization with partial pivoting
of SuperLU is called.

For the other reordering algorithms we use only two preprocessing steps. The matrix is
permuted using MC64 in order to place large entries on the diagonal, and then a fill-reducing
ordering is applied.

Table 5.2 displays for each reordering algorithm tested the fill-in, that is the ratio of the
number of nonzeros of L and U to the number of nonzeros of A. The cases represented in
the table by ”-” mean that SuperLU failed due to too much fill-in generated, and hence a
memory requirement that exceeded the limits of our computer. We focus on evaluating the
performance of Hund based on PaToH with default parameter settings (Hund-default in the
tables) and a varying number of partitions k = 16, 64, 128. We also present results obtained
by Hund based on PaToH with quality parameter settings (Hund-quality in the tables). As
we will see later, Hund-quality has a longer execution than Hund-default. Hence in practice
it could be used when several matrices with the same nonzero structure need to be factored,
and the reordering algorithm is called only once.

We observe that for half of the matrices in our test set, one variant of Hund-default
induced the least fill-in compared to the other state-of-art reordering algorithms Colamd,
Amd, and Metis. For 10 other matrices, each of Amd and Colamd produced the best
results, while Metis produced the best result for 6 matrices. For 15 matrices, Colamd
produces results comparable to the best results.

For most of the matrices, Hund-default produces comparable results when the number
of partitions increases from 16 to 128. As displayed in Table 5.2, the fill-in has a large
value between 30 and 70 for the matrices mark3jac020, zhao2, sinc12, mark3jac140sc,
sinc15, and sinc18 (numbers 4, 10, 14, 16, 19 and 22). However for these matrices Hund
produced the best results. The other reordering strategies lead generally to a larger number
of fill-in elements. Colamd leads to a fill-in factor between 42 and 116, and Metis (AT A)
leads to a fill-in factor between 32 and 66. For these cases Hund-default significantly out-
performs Colamd. Note that matrices sinc12, sinc15, and sinc18 come from the same
application domain (single-material crack problem), as well as matrices mark3jac020 and
mark3jac140sc (economic model).

We consider more in detail the fill in the factors L and U obtained by the two global
strategies in our tests, Hund (with kparts = 128) and Metis (applied on the structure of
AT A, which was better than A + AT ). For most of the matrices in our test set Hund leads
to comparable results to Metis, and sometimes it outperforms Metis. The best result is
obtained for matrix shermanACb, for which Hund leads to almost 4 times less fill than
Metis.

Figure 5.1 displays a performance profile of four orderings: Hund-default with kparts =
64, Colamd, Metis with AT A and Metis with A+AT . In a performance profile, a method
will have a point (x,y) in the graph if for Y percent of the problems in the test set, the
method leads to a fill-in that is within a factor of X (or better) of the fill-in found by the
best method for those problems. We can notice that Hund provides a robust ordering, being

11



# Colamd Amd Metis Metis Hund-default Hund-quality
(AT + A) (AT A) k=16 k=64 k=128 k=16 k=64 k=128

1 7.5 5.6 6.0 8.3 8.3 8.5 8.3 8.3 8.2 8.5
2 13.6 46.8 27.1 15.3 15.2 15.6 15.7 15.0 15.1 15.2
3 1.1 1.0 1.0 1.1 1.0 1.1 1.1 1.1 1.0 1.0
4 42.1 86.9 60.9 32.9 30.8 30.3 31.6 30.6 30.8 30.4
5 18.3 139.5 47.1 16.8 19.7 17.5 17.5 19.5 17.4 16.9
6 4.0 9.4 6.7 4.7 4.7 4.6 4.6 4.6 4.8 4.6
7 7.9 23.6 15.5 7.0 7.2 7.7 7.3 6.8 6.7 6.9
8 23.2 14.5 40.2 39.1 39.7 12.8 10.8 43.3 13.1 12.0
9 3.4 10.4 10.1 4.0 3.4 3.6 3.6 3.4 3.5 3.7
10 106.2 – 243.1 66.1 72.5 64.7 64.1 71.0 63.0 61.8
11 8.2 218.1 83.9 – 38.0 5.8 3.9 49.5 12.3 7.0
12 18.7 85.9 76.8 19.4 17.9 17.1 16.7 16.9 16.8 16.8
13 4.8 5.2 17.2 5.3 4.9 5.0 4.9 5.1 5.0 4.9
14 54.4 55.3 51.9 32.4 33.9 32.2 32.5 33.4 30.6 30.9
15 13.5 18.0 25.4 14.2 12.1 12.6 11.9 11.5 11.5 11.4
16 116.1 – 102.8 54.7 49.7 47.5 47.2 47.8 46.3 46.2
17 25.0 33.0 28.4 27.6 29.2 30.1 30.0 28.8 29.4 29.3
18 14.7 – 28.6 13.0 14.3 13.9 13.4 13.6 12.3 12.3
19 68.1 71.3 65.2 42.4 43.1 41.9 44.4 53.9 41.8 51.7
20 5.6 15.3 8.6 7.1 5.9 6.1 6.3 6.0 6.2 6.3
21 4.6 13.5 9.9 4.9 4.7 4.9 5.0 4.6 5.0 4.9
22 81.43 – 81.6 55.9 65.3 62.8 63.0 51.8 61.8 62.1
23 16.7 9.9 8.9 13.5 15.9 16.1 15.6 15.5 15.1 14.8
24 13.1 45.2 – 20.9 18.9 24.5 21.4 17.5 19.4 23.8
25 4.7 12.4 10.3 5.0 4.6 4.9 4.9 4.7 4.9 5.0
26 25.9 – 43.5 16.4 17.4 16.0 16.1 16.4 15.5 15.5
27 28.1 – 61.3 28.2 28.6 26.8 28.3 29.1 27.7 27.5

Table 5.2
Fill in the factors L and U , computed as (nnz(L) + nnz(U) − nnz(I))/nnz(A) obtained by

different fill-reducing strategies with SuperLU using a threshold of value 1. The best result among
Colamd, Amd, Metis on AT + A, Metis on AT A, and Hund-default is marked in boldface for
each matrix.

either the best or within 10% of the best performance.

5.2. Hund versus other Reordering Algorithms: Results with UMF-
PACK. UMFPACK is a right-looking multifrontal method which factorizes a sparse ma-
trix using a sequence of frontal matrices, where each frontal matrix holds a contiguous set
of pivot rows and columns. The ordering strategy in UMFPACK combines a fill-reducing
symbolic preordering with adjustments made during numeric factorization.

As the first step of fill-reducing ordering, all pivots with zero Markowitz cost (referred
to as singletons) are removed from the matrix. These correspond to the leading and trailing
1-by-1 blocks from a permutation to block triangular form. After singletons are removed,
the remaining matrix is permuted to reduce fill-in in the LU factorization.

In UMFPACK’s unsymmetric strategy, Hund, Colamd, or Metis (applied to AT A) is
used to order the columns. In the symmetric strategy, AMD or Metis (applied to A + AT )
is used to order both the rows and columns, and a preference is given to the diagonal when
selecting pivots. UMFPACK has an automatic strategy, which examines the matrix and tries
to select the best strategy; we do not use this default method in the results in this paper.

The numerical factorization can revise the ordering computed by the symbolic preanal-
ysis. Numerical threshold partial pivoting is used to select pivots within the pivot columns.

The size of each frontal matrix F is bounded by the frontal matrix that would arise
in a sparse multifrontal QR factorization. Since this can be much larger what is needed
by an LU factorization, columns within each frontal matrix are reordered during numerical

12



Fig. 5.1. Performance profile of ordering methods with SuperLU. Closer to 1, better the per-
formance is.

factorization to further reduce fill-in. This column reordering is only performed for the
unsymmetric strategy; it is not performed by the symmetric strategy. Since UMFPACK is
a right-looking method, it can consider the sparsity of a candidate pivot row when deciding
whether or not to select it. This can be a key advantage over left-looking methods such
SuperLU [15]. Left-looking methods cannot consider the sparsity of candidate pivot rows,
since the matrix to the right of the pivot column has not yet been updated when the pivot
row is selected.

There are thus three primary differences between UMFPACK and SuperLU which affect
the results presented in this paper.

1. UMFPACK removes singletons prior to factorization; SuperLU does not.

2. UMFPACK’s unsymmetric strategy revises its column orderings within each frontal
matrix to reduce fill-in; SuperLU does not revise the column orderings with each
supercolumn.

3. UMFPACK can select a pivot row based on sparsity; SuperLU cannot.

Complete results are shown in Table 5.3. Figure 5.2 displays a performance profile of
just four of the unsymmetric orderings (Hund-default with kparts = 64, Colamd, Metis
with AT A and Metis with A + AT ). Overall, Hund provides a robust ordering with a
performance profile superior to both Colamd and Metis. Notice that for about two thirds
of the matrices, the performance of Hund (k = 64) is within 10% of the best performance.

5.3. Quality of the Partitioning. In this section we discuss the separators ob-
tained during Hund’s unsymmetric nested dissection. These separators are important be-
cause they tend to have an impact on the fill in the factors L and U as well as on the
suitability of the reordered matrix for parallel execution. Fill in the factors can occur in the
separators and in the diagonal blocks, hence smaller the separator size, fewer nonzeros should
be obtained in the factors. In a parallel execution, the communication will incur during the
factorization of the separators. Hence the communication will be reduced for separators of
a smaller size.

We summarize here the more detailed results presented in the technical report [23] for
Hund-default with k = 128. We discuss the size of the separators corresponding to the first

13



# Colamd Amd Metis Metis Hund
(AT + A) (AT A) k=16 k=64 k=128

1 11.5 40.5 23.8 14.5 14.1 14.1 14.1

2 14.5 134.4 125.0 14.0 14.9 14.5 14.6

3 1.0 1.0 1.0 1.0 1.0 1.0 1.0

4 2.5 4.0 11.7 2.8 2.7 2.9 2.9

5 6.9 5.7 6.0 7.7 7.3 7.4 7.3

6 32.9 45.0 36.9 29.3 26.1 25.4 25.8

7 3.0 13.0 9.5 3.8 3.8 3.7 3.6

8 1.0 2.0 2.1 1.0 1.0 1.0 1.0

9 78.7 47.2 28.4 55.7 57.5 53.0 52.0

10 1.9 2.3 2.8 2.3 1.9 2.0 2.0

11 4.4 4.1 4.9 4.1 4.3 4.2 4.3

12 8.8 7.6 9.5 10.7 8.9 8.8 8.9

13 3.0 4.7 13.0 3.6 3.4 3.5 3.5

14 38.3 36.5 35.4 20.6 32.7 21.1 21.4

15 79.6 63.9 42.0 44.7 43.5 41.0 40.9

16 10.2 - 37.8 11.6 10.1 9.9 10.2

17 22.0 16.9 17.5 24.9 25.7 26.3 26.2

18 49.9 - 46.5 29.9 42.5 26.4 40.2

19 6.8 14.4 11.6 8.5 6.6 7.4 8.4

20 4.6 9.8 6.1 5.6 5.1 5.4 5.1

21 3.8 26.8 20.9 4.2 3.8 4.0 4.2

22 60.7 - - 38.9 - - -

23 5.9 - 14.4 8.3 8.0 7.9 8.3

24 3.8 28.4 - 4.2 3.8 4.0 4.1

25 14.3 9.4 8.9 11.6 13.6 13.1 13.6

26 20.2 56.1 - 11.2 12.6 12.0 11.7

27 23.7 - 25.8 25.6 24.2 23.7 23.0
Table 5.3

Fill in the factors L and U , computed as nnz(L + U − I)/nnz(A), using UMFPACK

three levels of unsymmetric nested dissection. The results for the other levels were in general
less than 1%.

For most of the matrices, the separators obtained by Hund-default are of small size,
and contain less than 5% of the columns of the matrix (very often less than 1%).

However, for six matrices in our test set, the number of columns and the number of
nonzeros in the separators of the first and the second level are very large. For example,
for matrix mult dcop 03 (number 11), around 40% of the columns are in the first level
separator, and an average of 11.5% of the columns are in the second level separator. Matrices
shermanACb, sinc12, sinc15, and sinc18 (numbers 8, 14, 19, 22) have more than 15% of
the columns in the first level separator. As already previously observed and as reported in
Table 5.2, for matrices in sinc family, Hund leads to a high amount of fill in the factors L
and U . This observation shows that the size of the separator has an important impact on
the quality of the reordering, that is the number of nonzeros in the factors L and U .

However this is not always true. For example the matrices zhao2 and mark3jac140sc
(numbers 10, 16) have separators of small size. But the fill in the factors L and U is high,
64 for zhao2 and 47 for mark3jac140sc.

5.4. Runtime of Hund. Table 5.2 displays the execution time of each reordering
algorithm tested. The execution times displayed for Metis include the time for forming AT +
A and AT A respectively. The execution times displayed for Hund include the hypergraph

14



Fig. 5.2. Performance profile of ordering methods with UMFPACK. Closer to 1, better the
performance is.

partitioning with PaToH, and the local ordering of diagonal blocks with CColamd. As it
could be expected, the execution time of Hund increases with increasing number of partitions.
Hund based on PaToH with quality parameter settings (Hund-quality in the table) is usually
between two and three times slower than Hund with default parameter settings (Hund-
default in the table) for a same number of partitions. In this discussion, we focus on the
results obtained by Hund default.

For the matrices in our test set, Colamd and Amd are faster than Metis and Hund.
Comparing the global approaches algorithms suitable for sparse LU factorization with partial
pivoting of unsymmetric matrices, we can note that for smaller matrices, Metis on AT A
and Hund-default with 16 partitions have comparable execution times. However, for larger
matrices Metis on AT A becomes slower than Hund-default. In these cases, the computation
of AT A becomes an important part of the ordering time. This can be observed in our test
set starting with matrix sinc15. For example for matrix av41092, Metis on AT A is almost
3 times slower than Hund-default with 16 partitions.

6. Conclusions and Future Work. We have presented a new ordering algorithm
(Hund) for unsymmetric sparse matrix factorization, based on hypergraph partitioning and
unsymmetric nested dissection. To enhance performance, we proposed a hybrid method that
combines the nested dissection with local reordering. Our method allows partial pivoting,
without destroying sparsity. We have tested the method using SuperLU and UMFPACK,
two well-known partial pivoting LU codes. Empirical experiments show that our method is
highly competitive with existing ordering methods. In particular, it is robust in the sense
that for about two thirds of the matrices in our study it performs close to the best of all the
other existing methods (within 10%). Thus, it is a good choice as an all-purpose ordering
method.

The Hund method was designed for parallel computing, though we only evaluated it in
serial here. The recursive top-down design allows coarse-grain parallelism, as opposed to local
search methods like AMD and COLAMD. For symmetric systems, nested dissection ordering
is considered superior for large systems and it is reasonable to expect the same holds for
unsymmetric systems. The most expensive part of Hund is hypergraph partitioning, which
can be done efficiently in parallel using the Zoltan toolkit [16]. The matching for strong

15



# Colamd Amd Metis Metis Hund default Hund quality
(AT + A) (AT A) k=16 k=64 k=128 k=16 k=64 k=128

1 0.02 0.00 0.03 0.05 0.12 0.29 0.42 0.43 1.04 1.33
2 0.02 0.02 0.05 0.12 0.16 0.29 0.38 0.70 1.25 1.49
3 0.00 0.02 0.15 0.17 0.08 0.12 0.16 0.23 0.45 0.62
4 0.07 0.05 0.17 0.28 0.30 0.53 0.65 1.17 1.91 2.23
5 0.02 0.03 0.22 0.30 0.28 0.61 0.87 1.19 2.53 3.46
6 0.05 0.02 0.15 0.22 0.24 0.35 0.36 1.05 1.54 1.46
7 0.02 0.00 0.03 0.17 0.20 0.25 0.29 0.82 1.08 1.12
8 0.42 0.07 0.25 8.42 0.36 0.51 0.50 5.35 5.78 5.62
9 0.08 0.07 0.42 0.60 0.41 0.72 0.86 1.40 2.79 3.19
10 0.10 – 0.57 0.88 0.83 1.37 1.72 4.06 6.02 7.76
11 0.12 0.12 0.32 – 1.25 1.39 1.49 14.27 13.84 13.21
12 0.55 0.38 0.75 1.40 1.13 1.35 1.56 3.45 4.55 5.26
13 0.20 0.15 1.00 1.67 0.63 1.27 1.57 2.14 4.70 6.28
14 0.08 0.17 0.47 0.75 0.52 0.56 0.63 1.73 1.96 1.83
15 0.13 0.15 0.72 1.08 0.84 1.08 1.26 2.43 3.78 4.49
16 0.47 – 1.47 2.55 1.74 2.47 2.87 6.83 10.12 11.55
17 0.73 0.20 0.65 1.80 1.49 2.25 2.39 4.21 6.72 8.46
18 0.07 – 0.20 0.63 0.73 1.02 1.20 2.32 3.40 4.31
19 0.17 0.33 0.83 1.52 0.90 0.99 1.06 2.12 3.19 2.76
20 1.02 0.78 1.98 4.53 2.45 3.19 3.26 5.53 8.11 9.22
21 0.37 0.22 1.73 2.80 1.39 2.36 2.85 4.13 7.61 9.96
22 0.32 – 1.32 3.12 1.49 1.72 1.82 5.97 4.06 4.53
23 0.68 0.22 1.67 3.23 1.88 3.08 3.95 5.86 11.79 15.63
24 0.75 0.78 – 15.07 2.86 3.90 4.29 7.13 11.66 14.58
25 0.75 0.48 3.75 6.18 2.46 3.84 5.11 6.08 11.39 16.95
26 0.52 – 2.37 17.02 5.92 6.91 7.75 12.99 16.25 17.58
27 2.67 – 2.55 8.55 6.78 8.16 8.58 15.06 20.61 21.91

Table 5.4
Ordering time in seconds of Colamd, Amd, Metis (applied on AT +A and AT A), and Hund.

The best time is marked in boldface for each matrix. Hund is tested with two different settings of
PaToH, default and quality (Hund default and Hund quality). The number of partitions is varied
as k = 16, 64, 128.

diagonal can also be performed in parallel [38], though no parallel MC64 is yet available.
Local reordering can be done locally in serial. Thus, our approach is well suited for fully
parallel solvers that aim at being time and memory scalable [25, 35].

There are several directions for future work. Hund uses a column separator approach
based on the column-net hypergraph model, where rows are vertices. The first direction of
research is to use other options, as to use the row-net hypergraph model, where columns
are vertices. The method will work as before, except now we find row separators instead of
column separators. The row separator approach is advantageous when the row separator is
smaller than the column separator. However, row permutations can now destroy the sparsity
structure. This variation is thus not suitable for partial pivoting with row interchanges
(though partial pivoting with column interchanges would be fine).

Since the best variation (row or column) depends on the matrix structure, an intriguing
idea is to combine these two methods. The idea is to try both partitioning methods for every
bisection, and pick the best. This gives a recursive decomposition that uses a combination
of row and column separators, and it is illustrated in Figure 6. This row-or-column hybrid
method is also used in the Mondriaan method for sparse matrix partitioning [41]. Obtaining
a strong diagonal is a bit more difficult with the hybrid method. As usual, we compute a
matching in the bipartite graph, but it is not obvious how to apply this as a permutation.
A pure row or column permutation of the entire matrix will ruin the sparsity structure.
Instead, parts of the matrix should be permuted by columns and other parts by rows. We

16



Fig. 6.1. Example of row-or-column hybrid method. The top level separator is a column
separator (blue), while one of the subproblems has a row separator (red) while the other has a
column separator (green).

omit the details here.

A second direction is to study hybridization with other local (greedy) ordering methods,
in particular, the recent unsymmetric methods by Amestoy, Li, Ng, and Pralet [2, 3].

A third direction of research is the usage of hypergraph partitioning in a parallel al-
gorithm for performing the LU factorization of sparse matrices. Our goal is to design an
algorithm that exploits the form of the matrix obtained after hypergraph partitioning and
that uses ca-pivoting, a new pivoting strategy introduced in [26] that reduces the amount of
communication performed in parallel sparse LU.

REFERENCES

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering
algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[2] P. R. Amestoy, X. S. Li, and E. G. Ng, Diagonal Markowitz scheme with local symmetriza-
tion, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 228–244.

[3] P. R. Amestoy, X. S. Li, and S. Pralet, Unsymmetric ordering using a constrained markowitz
scheme, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 302–327.

[4] C. Aykanat, A. Pınar, and U. V. Çatalyürek, Permuting sparse rectangular matrices into
block-diagonal form, SIAM J. Sci. Comp., 26 (2004), pp. 1860–1879.

[5] I. Brainman and S. Toledo, Nested-dissection orderings for sparse LU with partial pivoting,
SIAM Journal on Matrix Analysis and Applications, 23 (2002), pp. 998–112.

[6] U. V. Catalyrek and C. Aykanat, Hypergraph-partitioning based decomposition for parallel
sparse-matrix vector multiplication, IEEE Transaction on Parallel and Distributed Systems,
10 (1999), pp. 673–693.

[7] , Patoh: Partitioning tool for hypergraphs. User’s guide, 1999.

[8] U. V. Çatalyürek, Hypergraph Models for Sparse Matrix Partitioning and Reordering, PhD
thesis, Bilkent University, Computer Engineering and Information Science, Nov 1999.

[9] U. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based sparse matrix ordering,
in Second International Workshop on Combinatorial Scientific Computing (CSC05), CER-
FACS, Toulouse, France, Jun 2005.

[10] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, Algorithm 887: CHOLMOD,
supernodal sparse cholesky factorization and update/downdate, ACM Trans. Math. Softw.,
35 (2008), pp. 1–14.

[11] T. Davis, University of Florida Sparse Matrix Collection. NA Digest, vol. 92, no.
42, October 16, 1994, NA Digest, vol. 96, no. 28, July 23, 1996, and NA Di-
gest, vol. 97, no. 23, June 7, 1997, ACM Trans. Math. Software, under submission.
http://www.cise.ufl.edu/research/sparse/matrices.

[12] T. A. Davis, Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method, ACM
Transactions on Mathematical Software, 30 (2004), pp. 196–199.

[13] , Direct Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, 2006.

17



[14] T. A. Davis, J. R. Gilbert, S. Larimore, and E. Ng, Algorithm 836: Colamd, a column
approximate minimum degree ordering algorithm, ACM Trans. Math. Software, 30 (2004),
pp. 377–380.

[15] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, A Supernodal
Approach to Sparse Partial Pivoting, SIAM J. Mat. Anal. Appl., 20 (1999), pp. 720–755.

[16] K. Devine, E. Boman, R. Heaphy, R. Bisseling, and U. Catalyurek, Parallel hypergraph
partitioning for scientific computing, in Proc. of 20th International Parallel and Distributed
Processing Symposium (IPDPS’06), IEEE, 2006.

[17] I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a
sparse matrix, SIAM J. Mat. Anal. and Appl., 22 (2001), pp. 973–996.

[18] I. S. Duff and J. A. Scott, A parallel direct solver for large sparse highly unsymmetric linear
systems, ACM Trans. Math. Software, 30 (2004), pp. 95–117.

[19] , Stabilized bordered block diagonal forms for parallel sparse solvers, Parallel Computing,
31 (2005), pp. 275–289.

[20] A. George, Nested dissection of a regular finite-element mesh, SIAM J. Numerical Analysis,
10 (1973), pp. 345–363.

[21] J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic
operations, SIAM J. Sci. Statist. Comput, 9 (1988), pp. 862–874.

[22] J. R. Gilbert and R. Schreiber, Nested dissection with partial pivoting, Sparse Matrix Sym-
posium 1982: Program and Abstracts, (1982), p. 61. Fairfield Glade, Tennessee.

[23] L. Grigori, E. G. Boman, S. Donfack, and T. Davis, Hypergraph-based unsymmetric nested
dissection ordering for sparse LU factorization, Tech. Rep. 6520, INRIA, 2008.

[24] L. Grigori, M. Cosnard, and E. Ng, On the Row Merge Tree for Sparse LU Factorization
with Partial Pivoting, BIT Numerical Mathematics Journal, 47 (2007), pp. 45–76.

[25] L. Grigori, J. Demmel, and X. Li, Parallel Symbolic Factorization for Sparse LU Factoriza-
tion with Static Pivoting, SIAM J. on Sc. Comp., 29 (2007), pp. 1289–1314.

[26] L. Grigori, J. W. Demmel, and H. Xiang, Communication avoiding Gaussian elimination,
Proceedings of the ACM/IEEE SC08 Conference, (2008).

[27] B. Hendrickson and R. Leland, An Improved Spectral Graph Partitioning Algorithm for
Mapping Parallel Computations, SIAM J. Sci. Stat. Comput., 16 (1995), pp. 452–469.

[28] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, in Proc.
Supercomputing ’95, ACM, December 1995.

[29] B. Hendrickson and E. Rothberg, Improving the runtime and quality of nested dissection
ordering, SIAM J. Sci. Comp., 20 (1997), pp. 468–489.

[30] HSL, A collection of Fortran codes for large scale scientific computation, 2004.
http://www.cse.clrc.ac.uk/nag/hsl/.

[31] Y. Hu, K. Maguire, and R. Blake, A multilevel unsymmetric matrix ordering algorithm
for parallel process simulation, Computers and Chemical Engineering, 23 (January 2000),
pp. 1631–1647.

[32] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, Multilevel Hypergraph Partitioning:
Applications in VLSI Domain, IEEE Transactions on VLSI Systems, 7 (1999), pp. 69–79.

[33] G. Karypis and V. Kumar, Metis: A software package for partitioning unstructured graphs,
partitioning meshes and computing fill-reducing orderings of sparse matrices - verstion 4.0,
1998. See http://www-users.cs.umn.edu/karypis/metis.

[34] , A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM Jour-
nal on Scientific Computing, 20 (1999), pp. 359–392.

[35] X. S. Li and J. W. Demmel, SuperLU DIST: A Scalable Distributed-memory Sparse Direct
Solver for Unsymmetric linear systems, ACM Trans. Math. Software, 29 (2003).

[36] R. J. Lipton, D. J. Rose, and R. E. Tarjan, Generalized nested dissection, SIAM Journal on
Numerical Analysis, 16 (1979), pp. 346–358.

[37] J. W. H. Liu, Modification of the minimum degree algorithm by multiple elimination, ACM
Trans. Math. Software, 11 (1985), pp. 141–153.

[38] F. Manne and R. Bisseling, A parallel approximation algorithm for the weighted maximum
matching problem, in Proc. Seventh Int. Conf. on Parallel Processing and Applied Mathe-
matics (PPAM 2007), 2007.

[39] H. M. Markowitz, The elimination form of the inverse and its application to linear program-
ming, Management, 3 (1957), pp. 255–269.

18



[40] M. A. Saunders. personal communication.

[41] B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for parallel
sparse matrix-vector multiplication, SIAM Review, 47 (2005), pp. 67–95.

[42] M. Yannakakis, Computing the minimum fill-in is np-complete, SIAM J. Alg. Disc. Meth., 2
(1981), pp. 77–79.

19


